TABLE OF THE FOUR POINTS OF CONCURRENCY

	LINES	$\begin{gathered} \text { POINTS OF } \\ \text { CONCURRENCY } \\ \text { (P.C.) } \end{gathered}$	$\begin{aligned} & \text { P.C. is inside } \\ & \text { which } \\ & \text { triangle? } \end{aligned}$	P.C. is outside which triangle?	Lines bisect which part of the triangle?	P. C. is Center of what?	$\frac{\text { Special properties of }}{\text { P. C. }}$
1	$\begin{aligned} & \hline \frac{\text { Medians }}{\text { (Passes }} \\ & \text { @ vertex) } \end{aligned}$	Centroid	All Triangles	None	Sides of triangle	Mass of triangle	1)Divides median into 2:1 Ratio 2)Average of the Vertices 3) Center of Mass
2		Incenter	All Triangles	None	Angles of triangle	Inscribed Circle	1)Equidistant to the sides of the triangle. 2) Center of inscribed circle
3	$\begin{aligned} & \frac{\text { Perpendicular }}{\text { bisectors }} \\ & (\text { Sometimes } \\ & \text { pass @ Vertex) } \end{aligned}$	Circumcenter	Acute Triangles	Obtuse Triangles	Sides of triangle	$\begin{aligned} & \text { Circumscribed } \\ & \text { Circle } \end{aligned}$	1)Equidistant to the Vertices of the triangle 2) Center of Circumscribed circle 3)Midpoint of hypotenuse of a right triangle
4	$\frac{\text { Altitudes }}{(\text { Heights) }}$ (Passes @vertex)	Orthocenter	Acute Triangles	Obtuse Triangles	None		1) Vertex @ the right angle of a right triangle.

Euler Line \rightarrow Circumcenter to Centroid to Orthocenter : Ratio of 1:2

